Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioelectrochemistry ; 149: 108285, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36240548

RESUMO

This study is designed to investigate the interaction of phenylpiperidine derivative drug paroxetine, which is an effective serotonin reuptake inhibitor and biomolecules through electrochemical, fluorescence spectroscopy, and molecular docking methods. The interaction between paroxetine and biomolecules was investigated by differential pulse voltammetry according to the decrease in deoxyguanosine anodic oxidation signal of double-stranded calf thymus DNA. Fluorescence spectroscopy studies were performed by titrating paroxetine against double-stranded calf thymus DNA solution at four different temperatures. The fluorescent results showed that paroxetine had a great affinity to bind with double-stranded calf thymus DNA. Interaction studies demonstrate that paroxetine binds to double-stranded calf thymus DNA via intercalation binding mode, and the binding constant values ​​were calculated as 7.24 × 104 M-1 and 1.52 × 104 M-1 at 25 °C, based on voltammetric and spectroscopic results, respectively. Moreover, with the aim of elucidating the interaction mechanism between paroxetine and double-stranded calf thymus DNA, electrochemical and fluorescence spectroscopy studies along with molecular docking analysis were made.


Assuntos
DNA , Paroxetina , Antidepressivos/farmacologia , Dicroísmo Circular , DNA/química , Simulação de Acoplamento Molecular , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Termodinâmica
2.
Nanomaterials (Basel) ; 12(11)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35683675

RESUMO

Over the past decade, layered double hydroxides (LDH) have been the subject of extensive investigations owing to their remarkable water splitting catalytic activity. Stability and porosity are several of the features of LDH which help them to serve as efficient oxygen evolution reaction (OER) catalysts. Based on these considerations, we synthesized NiCo(OH)2 LDH and probed its OER electrocatalytic performance. The synthesized catalyst was subjected to X-ray diffraction, scanning electron microscopy, and X-ray photoelectron spectroscopy for structural analysis and investigation of its surface morphology, surface composition, and oxidation states. The LDH-NiCo(OH)2 was anchored over the FTO surface and the fabricated electrode was found to exhibit a much lower OER onset potential of 265 mV, a much higher current density of 300 mAcm-2 and a smaller Tafel slope of 41 mVdec-1. Moreover, the designed catalyst was found to be stable up to 2500 repeated voltametric scans. These figures of merit regarding the structure and performance of the designed LDH are expected to provide useful insights into the fundamental understanding of the OER catalysts and their mechanisms of action, thus enabling the more rational design of cost effective and highly efficient electrocatalysts for use in water splitting.

3.
Bioelectrochemistry ; 146: 108135, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35468353

RESUMO

This study examines the interaction between pyrimidine nucleoside analogue azacytidine, an anti-leukemic drug, and DNA by employing electrochemical, UV-vis spectroscopy, fluorescence spectroscopy and molecular docking techniques. In the electrochemical technique, azacytidine and dsDNA interaction was investigated in two different ways: (1) in solution and (2) with a biosensor using differential pulse voltammetry (DPV) at a glassy carbon electrode. The interaction between azacytidine and dsDNA at increasing interaction times was investigated in line with the changes in adenine and guanine oxidation signals. In addition, interaction studies of polyguanine-azacytidine and polyadenine-azacytidine were performed with DPV. The binding constant values were calculated as 2.420 × 104 M-1 and 3.266 × 104 M-1 at 25 °C using UV and fluorescence spectroscopy, respectively. In conclusion, based on electrochemical and spectroscopic methods as well as molecular docking studies, it was predicted that azacytidine can bind to dsDNA via groove binding.


Assuntos
Azacitidina , Técnicas Biossensoriais , Técnicas Biossensoriais/métodos , DNA/química , Técnicas Eletroquímicas/métodos , Eletrodos , Simulação de Acoplamento Molecular , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...